深度学习01 神经网络

目录

神经网络

​感知器

感知器的定义

感知器的数学表达

感知器的局限性

多层感知器(MLP, Multi-Layer Perceptron)

多层感知器的定义

多层感知器的结构

多层感知器的优势

偏置

偏置的作用

偏置的数学表达

神经网络的构造

神经网络的基本组件

前向传播(Forward Propagation)

损失函数

损失函数的作用

常见的损失函数

0-1损失函数

​均方差损失

平均绝对差损失

​交叉熵损失

​合页损失

总结

正则化惩罚

反向传播(BP神经网络

学习>深度学习是机器学习领域中的一个新的研究方向。所以在学习学习>深度学习之前我们需要了解一下神经网络

神经网络

神经网络:是由大量的节点(或称“神经元”)和之间相互的联接构成。 每个节点代表一种特定的输出函数,称为激励函数、激活函数(activation function)。 每两个节点间的联接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。

神经网络的本质

通过参数与激活函数来拟合特征与目标之间的真实函数关系。本质上是矩阵的运算。

神经网络是一种模拟人脑神经元工作方式的数学模型,用于解决各种机器学习问题。它由多个层(layers)组成,每一层包含多个神经元(neurons),这些神经元通过权重(weights)和偏置(biases)连接在一起。

感知器

感知器的定义

由两层神经元组成的神经网络--“感知器”(Perceptron),感知器只能线性划分数据。

感知器的数学表达
感知器的局限性

感知器只能解决线性可分的问题,无法解决非线性问题(如异或问题)。

多层感知器(MLP, Multi-Layer Perceptron

多层感知器的定义

多层感知器是由多个感知器组成的神经网络,包含输入层、隐藏层和输出层。通过增加隐藏层,MLP能够解决非线性问题。

tip:增加一个中间层,即隐含层,这也是神经网络可以做非线性分类的关键。

多层感知器的结构
  • 输入层:接收输入数据。

  • 隐藏层:对输入数据进行非线性变换。

  • 输出层:输出最终结果。

多层感知器的优势

通过增加隐藏层和神经元数量,MLP可以拟合任意复杂的函数。

偏置

神经网络中需要默认增加偏置神经元(节点),这些节点是默认存在的。 它本质上是一个只含有存储功能,且存储值永远为1的单元。在神经网络的每个层次中,除了输出层以外,都会含有这样一个偏置单元。

tips:

  1. 偏置节点没有输入。

  1. 一般情况下,不会明确画出偏置节点。

偏置的作用

偏置是神经元中的一个参数,用于调整神经元的激活阈值。它允许模型在输入为0时仍然能够输出非零值。

偏置的数学表达

在加权求和公式中,偏置 b是一个常数项:

神经网络的构造

神经网络的基本组件
  • 神经元:计算加权和并通过激活函数输出。

  • 层(Layer):由多个神经元组成,分为输入层、隐藏层和输出层。

    中间层如何确定?

    输入层的节点数:与特征的维度匹配 输出层的节点数:与目标的维度匹配。 中间层的节点数:目前业界没有完善的理论来指导这个决策。一般是根据经验来设置。较好的方法就是预先设定几个可选值,通过切换这几个值来看整个模型的预测效果,选择效果最好的值作为最终选择。

  • 连接(Connection):神经元之间通过权重连接。

tips: 1、设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定; 2、神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别; 3、结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。

前向传播(Forward Propagation)

输入数据通过每一层的神经元,最终得到输出结果的过程。

损失函数

损失函数的作用

损失函数用于衡量模型预测值与真实值之间的差距。通过最小化损失函数,模型能够逐步优化。

常见的损失函数
0-1损失函数

0-1损失函数是最简单的分类损失函数,用于衡量分类任务中预测值与真实值是否一致。

均方差损失

均方差损失是回归任务中最常用的损失函数,衡量预测值与真实值之间的平方差。

平均绝对差损失

平均绝对差损失是回归任务中另一种常用的损失函数,衡量预测值与真实值之间的绝对差。

交叉熵损失

交叉熵损失是分类任务中最常用的损失函数,衡量预测概率分布与真实概率分布之间的差异。

神经网络多分类情况下,交叉熵损失函数运算过程如下:

合页损失

合页损失是支持向量机(SVM)中常用的损失函数,用于最大化分类间隔。

总结
损失函数应用场景优点缺点
0-1损失函数分类任务简单直观不可导,无法优化
均方差损失回归任务可导,易于优化对异常值敏感
平均绝对差损失回归任务对异常值不敏感在零点不可导,优化效率低
交叉熵损失分类任务适合概率输出,优化效果好对预测概率准确性要求高
合页损失二分类任务对分类间隔敏感,适合SVM不适合概率输出,对噪声敏感

正则化惩罚

正则化惩罚用于避免模型过拟合到训练数据,从而提高模型的泛化能力。正则化惩罚通过在目标函数中引入一个正则化项,以限制模型参数的大小或复杂度。

1)正则化惩罚的功能
        主要用于惩罚权重参数w,一般有L1和L2正则化。

2)L1正则化
        L1正则化通过在目标函数中加入参数的L1范数(绝对值之和),使得模型更倾向于产生稀疏的权重矩阵,即将一部分参数置为0,从而减少模型的复杂度。这可以帮助筛选出对模型影响较大的特征,提高模型的鲁棒性和可解释性。

3)L2正则化        
        L2正则化通过在目标函数中加入参数的L2范数(平方和的开方),使得模型更倾向于产生较小的权重值。这可以有效地控制模型参数的大小,避免出现过大的参数值,从而减少模型对训练数据的过拟合。

反向传播(BP神经网络

反向传播的原理

BP(Back-propagation,反向传播)前向传播得到误差,反向传播调整误差,再前向传播,再反向传播一轮一轮得到最优解的。

反向传播是一种高效计算梯度的方法,通过链式法则从输出层到输入层逐层计算损失函数对每个参数的梯度。


http://www.niftyadmin.cn/n/5845012.html

相关文章

3.攻防世界 Confusion1(服务器模板注入SSTI)

题目描述如下 进入题目页面如下 图片是蟒蛇、大象?python、php? 猜测需要代码审计 点击 F12查看源码,有所提示flag 但是也没有其他信息了 猜测本题存在SSTI(服务器模板注入)漏洞,为验证,构造…

SQL 秒变 ER 图 sql转er图

🚀SQL 秒变 ER 图,校园小助手神了! 学数据库的宝子们集合🙋‍♀️ 是不是每次碰到 SQL 转 ER 图就头皮发麻?看着密密麻麻的代码,脑子直接死机,好不容易理清一点头绪,又被复杂的表关…

B站自研的第二代视频连麦系统(上)

导读 本系列文章将从客户端、服务器以及音视频编码优化三个层面,介绍如何基于WebRTC构建视频连麦系统。希望通过这一系列的讲解,帮助开发者更全面地了解 WebRTC 的核心技术与实践应用。 背景 在文章《B站在实时音视频技术领域的探索与实践》中&#xff…

【LeetCode力扣】1.(简单)两数之和(JavaScript)

两数之和: 题目描述: 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重…

【人工智能】使用Python实现图像风格迁移:理论、算法与实践

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 图像风格迁移是一种利用深度学习技术将一张图像的内容与另一张图像的风格相结合的技术。本文将深入探讨图像风格迁移的基本理论和实现方法,…

2、ansible的脚本

ansible的脚本------------playbook剧本 脚本的作用:复用 playbook的组成部分: 1、开头 ---- 表示,表示是一个yaml文件,但是可以忽略。 2、Tasks(任务),包含了在目标主机上执行的操作&#…

2025年软件测试五大趋势:AI、API安全、云测试等前沿实践

随着软件开发的不断进步,测试方法也在演变。企业需要紧跟新兴趋势,以提升软件质量、提高测试效率,并确保安全性,在竞争激烈的技术环境中保持领先地位。本文将深入探讨2025年最值得关注的五大软件测试趋势。 Parasoft下载https://…

快速上手——.net封装使用DeekSeek-V3 模型

📢欢迎点赞 :👍 收藏 ⭐留言 📝 如有错误敬请指正,赐人玫瑰,手留余香!📢本文作者:由webmote 原创📢作者格言:新的征程,用爱发电,去丈量人心,是否能达到人机合一?开工大吉 新的一年就这么水灵灵的开始了,在这里,祝各位读者新春快乐,万事如意! 新年伊…